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Abstract—Real-time human activity recognition (HAR) is cru-
cial for adaptive control in lower limb exoskeletons, yet achieving an
optimal balance between accuracy, latency, and sensor complexity
remains challenging. This study’s key idea is to systematically
evaluate sensor selection and data modalities for real-time HAR
using deep neural networks (DNNs) with ultra-short 50 ms sliding
windows. Leveraging a dataset from 21 subjects performing six
locomotion activities and employing three deep learning models
[multilayer perceptron (MLP), LSTM, CNN-LSTM], we assess
multiple sensor combinations, including joint angle data, derived
angular velocities, and inertial measurements, and quantify their
trade-offs across accuracy, latency, and model complexity. Our
analysis reveals that bilateral joint angles from hip, knee, and ankle
achieve 98.98% accuracy, significantly outperforming unilateral
sensor setups. Adding a thigh-mounted inertial measurement unit
further elevates accuracy to 99.23%, highlighting the advantages
of multimodal sensor fusion. In addition, incorporating derived
joint angular velocities enhances accuracy, with up to 15% increase
when using single-joint bilateral inverse kinematics data. Even a
minimal configuration, such as bilateral hip joints with derived
angular velocities, achieves over 94% accuracy, offering practical
solutions for low-power wearable systems. These findings establish
actionable design principles for HAR-driven control in assistive
robotics and mobile health applications.

Index Terms—Deep learning, human activity recognition (HAR),
locomotion mode, neural network, sensor selection.
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I. INTRODUCTION

HUMAN lower limb exoskeletons have made significant
strides in rehabilitation and mobility augmentation. How-

ever, effectively integrating these devices with users’ natural mo-
tion remains challenging. Conventional control methods, which
rely on preprogrammed motion trajectories or direct actuator
control, often struggle to adapt when transitioning between
locomotion modes, such as walking, climbing stairs, or stand-
ing. To address this limitation, recent research has focused on
developing precise control strategies for specific movements [1],
[2], [3]. Human activity recognition (HAR) enables real-time
intent detection, allowing exoskeletons to switch between these
movement-specific controllers automatically [4], [5]. This elim-
inates manual mode selection, reduces cognitive load, and en-
hances usability in dynamic environments [6]. High accuracy
HAR is typically associated with appropriate sensor type and
placement selection. An optimized sensor configuration can
reduce data redundancy, lower system complexity and latency,
and establish a strong foundation for adaptive control for both
high-level in lower-limb exoskeleton systems [7], [8].

In this study, we present a systematic evaluation of sensor and
data selection for real-time HAR. Utilizing a comprehensive
human activity dataset [9], we systematically assess sensor
modalities commonly used in HAR, their corresponding feature
channels, and placement options. Our objective is to balance sen-
sor quantity and types while ensuring high HAR accuracy. This
design improves sensor configuration and inference efficiency
and helps mitigate challenges related to sensor synchronization,
computational complexity, and potential data loss in real-world
exoskeleton applications. Distinct from prior work [4], [10],
[11], we explore the use of ultra-short (50 ms) time windows
as inputs to deep learning models, enabling real-time HAR
without sacrificing accuracy. Furthermore, we investigate the
impact of derived feature channels (e.g., joint velocity) on model
performance, showing their effectiveness in compensating for
reduced physical sensing. The use of such synthetic data may
prove advantageous, particularly when reducing the number of
physical sensors.

II. RELATED WORK

HAR is a well-established challenge in machine learning, with
numerous approaches developed over the years. These methods
can be broadly categorized into sensor-based and nonsensor-
based techniques. Nonsensor approaches include those relying
on computer vision [12] and Wi–Fi-based techniques [13],
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[14], whereas sensor-based methods utilize wearable sensors to
capture motion data. The sensor-based approaches have been
widely adopted for distinguishing daily human activities (such
as sitting, standing, walking, and stair climbing) [15], with
applications in healthcare, sports, and assistive technologies.
Commercial wearables, such as smartphones [16], utilize
inertial measurement units (IMUs) for basic activity recognition.
Foundational datasets, such as the University of California,
Irvine (UCI) HAR study [17] demonstrated that minimal
sensor configurations such as these can be sufficient to classify
stationary activities (e.g., sitting and lying) and some basic
dynamic movements (e.g., walking) with reasonable accuracy.

However, distinguishing more nuanced movement variations,
particularly within locomotion modes, requires careful sensor
selection. Optimizing sensor selection in HAR is crucial for
improving wearability and reducing power consumption without
compromising accuracy. Zappi et al. [18] analyzed the tradeoff
between sensor power consumption and HAR accuracy and
Yu et al. [19] reviewed commonly used sensor types and their
placement strategies. However, their work primarily provided
guidance on sensor choice rather than assessing how sensor
quantity and placement together impact classification accuracy.
Prior studies provide guidance on sensor choice but do not jointly
assess how sensor quantity and placement affect HAR accuracy,
and most pipelines rely on longer windows tied to gait-cycle
segmentation, which is incompatible with real-time exoskele-
ton control. This work addresses this gap by systematically
evaluating sensor types, placements, and derived channels for
50 ms real-time HAR with DNNs. Camargo et al. [10] applied
traditional machine learning and multilayer perceptron (MLP)
models on extracted features to classify ambulation modes and
estimate terrain parameters (e.g., stair height, ramp incline),
assessing the impact of redundancy on classification accuracy
and reinforcing the need for optimized sensor selection in HAR.
Beyond sensor selection, identifying the most informative fea-
ture channels within each sensor is equally important, partic-
ularly in time-series HAR [20]. An IMU typically includes a
tri-axial accelerometer and a gyroscope, yielding six distinct
feature channels of acceleration and angular velocity. In contrast,
electronic goniometers are limited to sagittal and frontal plane
measurements but offer direct joint angle estimation. Despite
providing fewer feature channels, joint angles have been shown
to be highly informative for HAR. The work of Lee et al. [21]
discusses the impact of using goniometer data from the unilat-
eral and bilateral knee and ankle joints on the performance of
HAR models. Similarly, Kang et al. [22] used exoskeleton joint
encoders derived from inverse kinematics (IK) data and found
that excluding hip joint angles significantly reduced HAR per-
formance. In the context of human lower limb exoskeletons [23],
encoders embedded within actuators are a more commonly uti-
lized means of angle data acquisition. Advancements in sensor
selection frameworks, such as automated sensor-feature subset
optimization [24], have demonstrated the ability to dynamically
reduce sensor redundancy while addressing complex recognition
challenges, leading to improved accuracy in classification and
estimation tasks.

Real-time HAR systems face critical design trade-offs be-
tween temporal resolution and model complexity. While tra-
ditional machine learning methods [support vector machine
(SVM), random forests, linear discriminant analysis (LDA)]
excel at feature selection and data compression for efficient
training [25], [26], their reliance on gait cycle segmentation
(typically 150–200 ms) [4] introduces latency incompatible with

exoskeleton control requirements. This limitation motivates the
adoption of deep learning architectures capable of processing
shorter time windows (< 150 ms) without compromising tempo-
ral dependencies. Long Short-Term Memory (LSTM) networks
address this challenge through memory cells and gating mecha-
nisms, and they are particularly effective in modeling sequential
data, making them well-suited for HAR tasks where the temporal
dynamics of sensor data are crucial [27], while CNN-LSTM hy-
brids combine convolutional layers for spatial feature extraction
with LSTM temporal modeling [28]. These architectures achieve
state-of-the-art performance on benchmark datasets (95.85%
on WISDM [29], 92.1% on LSTM implementations [30]),
outperforming both traditional methods and basic MLP that
serve as nontemporal baselines [17]. The choice between these
approaches involves fundamental trade-offs: shallow models
(MLPs) provide computational efficiency for well-defined fea-
ture spaces, whereas LSTM variants capture complex activity
patterns through inherent temporal reasoning, a critical capabil-
ity for real-time exoskeleton control. Beyond these, emerging
deep learning models continue to push HAR performance. For
example, Ronald et al. introduced the iSPLInception model
based on a ResNet architecture, achieving 95% accuracy on the
UCI-HAR dataset [31], while transformer-based models lever-
age self-attention mechanisms to capture long-range temporal
dependencies [32]. These advances highlight accuracy gains, but
also reinforce the persistent trade-off between model complexity
and real-time feasibility.

Although HAR is a well explored area, significant challenges
persist in determining optimal sensor configurations for various
applications. Numerous studies have focused on optimizing
IMU placement under various conditions. The work by Xia
et al. [33] established an optimization scheme for virtual sensor
data to determine the optimal placement of IMUs for different
activities; Zheng et al. [34] proposed a method for human posture
reconstruction achieved by optimizing the selection of IMUs and
using bidirectional recurrent neural networks. Caramia et al. [35]
conducted an analysis of optimized IMU configurations in
the assessment of Parkinson’s Disease. The study by Poulose
et al. [36] investigated the performance of IMU sensors placed
on the wrist, waist, and ankle across various physical activities.
However, identifying a universally optimal HAR setup remains
a challenge due to varying experiment designs, sensor types, and
configurations of machine learning or deep learning models [37],
[38]. Real-time HAR further adds another layer of complexity,
often requiring a reduction in the amount of data processed by
deep learning models along the time dimension while maintain-
ing accuracy.

III. METHODS

A. Data Selection

Our sensor and data selection strategy involved systematically
evaluating various combinations of sensor types, anatomical
placements, and derived features available in a public biome-
chanics dataset. These configurations were assessed using mul-
tiple deep learning models to identify minimalist sensor sets
that enable high-accuracy, low-latency HAR suitable for wear-
able assistive systems. For this purpose, the study utilized the
Georgia Tech lower limb biomechanics dataset [9] comprising
21 subjects (out of 22, excluding subject AB07 due to data-label
desynchronization). Each subject was equipped with 3 goniome-
ters (hip, knee and ankle), 4 six-axis IMUs on the right lower
limb (thigh, shank and foot) and trunk, and 32 motion capture
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Fig. 1. Placement of utilized IMUs, goniometers, and motion capture markers.
More details on sensor and marker placement can be found in [9].

markers based on the Helen Hayes Hospital marker set [39].
The data utilized in our study comprises of the bilateral flexion
angles of the hips, knees, and ankles, computed through IK on
the marker data. While marker-based IK data are not directly
applicable to real-time exoskeleton control, they were used to
simulate joint angle data provided by encoders, considering the
similarity between IK joints and encoders in providing joint
angle data. This also facilitates the comparison of bilateral (IK)
and unilateral joint angles (goniometers) in HAR performance.
Although the dataset includes electromyographic (EMG) sig-
nals, which are valuable for muscle activation analysis, we ex-
cluded EMG data from our analysis due to its inherent noise and
variability [40]. EMG signals typically require precise electrode
placement and skin contact, which introduce practical chal-
lenges in daily exoskeleton use. The placement of utilized IMUs,
goniometers, and motion capture markers is shown in Fig. 1. All
the sensors and motion capture markers are directly mounted
on the human body. Given our focus on lower limb-mounted
sensors for exoskeleton integration, IMU data from the trunk
was excluded to better reflect the scenario of sensor integration
in lower limb exoskeletons. For IMU data, we retained all six
axes of accelerometer and gyroscope measurements as input to
the models. In the original dataset, goniometers were used to
measure the joint angles in the frontal and sagittal planes of the
hip and ankle, and only in the sagittal plane of the knee joint.
We restricted our analysis to sagittal plane goniometer data for
all joints (hip, knee, ankle), as sagittal kinematics (e.g., hip/knee
flexion/extension) are biomechanically dominant in the studied
locomotion activities. Similarly, from the IK joint angle data,
only the sagittal plane angles of the hip, knee, and ankle joints
were utilized. In the dataset, the IMU data was sampled at 200 Hz
and postprocessed using a 6th-order Butterworth low-pass filter
with a cutoff frequency of 100 Hz. The goniometer data was
sampled at 1000 Hz and processed using a 4th-order Butterworth
low-pass filter with a cutoff frequency of 20 Hz. The IK joint
angle data available in the dataset was also given at 200 Hz and
postprocessed using a 4th-order zero-lag Butterworth low-pass
filter with a cutoff frequency of 6 Hz. For consistence, we
downsampled the goniometer time series at 200 Hz, aligning
with the sampling frequency of both the IMU and IK data.

The dataset provides more than 20 types of activity labels, and
we selected 6 common and representative action labels: standing
(ST), walking on level ground (WL) at self-selected speeds

(0.88–1.45 m/s), ascending/descending on ramps (RA/RD)
across six inclines (5.2°–18°), and ascending/descending on
stairs (SA/SD) with four step heights (4–7 in.). Each subject
completed 30 WL trials, 40 SA/SD trials, and 60 RA/RD trials,
yielding approximately 15 min of steady-state kinematic data
per participant.

B. Data Post-Processing

A sliding window segmentation method was employed to
transform time series data into tensor formats suitable for train-
ing deep learning models. The window size and the overlap
rate are the two key parameters that affect the input of the
HAR models. For algorithms primarily focused on successfully
identifying activities, the maximum sliding window duration
can be as long as 10 s [41]. However, for algorithms requiring
quick response, such as those used in exoskeleton control, the
sliding window duration can be much shorter (e.g. 150 ms [4]),
provided that accuracy is satisfactory. In our implementation,
the length of the sliding window is set at 50 ms with an overlap
of 50%. We fixed the overlap at 50% across all configurations to
ensure temporal continuity between consecutive windows and
minimize redundancy in real-time processing. A 50% sliding
window overlap was also commonly used in other HAR stud-
ies [42], [43], [44].

Sikder et al. [45] indicated that increasing the number of
feature channels in NN models can enhance the model’s ability
to learn complex and diverse features, which in turn can improve
the accuracy and robustness of HAR models. When using only
goniometers, joint angles are the sole input features available for
the HAR model. While joint angular velocities can be directly
measured using IMUs [46], [47], such approaches necessitate
additional hardware, increasing system complexity and cost. To
circumvent this, we approximate the joint angular velocities
by differentiating joint angle data using the central difference
method, eliminating the need for extra sensors. This approach
was applied to angular data from both the goniometer and IK
joint angles to derive the sagittal plane angular velocities of vari-
ous joints, offering a practical solution in scenarios where direct
angular velocity measurements are unavailable or impractical.

C. Neural Networks

We implemented three DNN models introduced in Section I:
MLP, LSTM, and CNN-LSTM. Depicted in Fig. 2(a), our LSTM
model comprises one LSTM layer with 100 neurons, a 50%
dropout layer, and two dense, fully connected layers. The MLP
architecture [see Fig. 2(b)] comprised of an input layer, a hidden
layer (with 128 neurons), and an output layer. The CNN part
of the CNN-LSTM integrates two convolutional layers with a
kernel size of 3, an additional 50% dropout layer, and a pooling
layer. Fig. 2(c) illustrates the CNN component’s architecture. An
additional flattened layer is located at the end to compress the
dimensions of the CNN output tensor to match the dimensions of
the input required by the LSTM. The subsequent LSTM structure
attached to the CNN mirrors that of the standalone LSTM.

For training and testing of the deep learning models, each
subject’s data after the sliding window method was divided
into training and test sets with a ratio of 7:3 and the subject-
specific models were trained for each subject individually. In
our experimental setup, we employed the Adam optimizer with
cross-entropy as the loss function across all three model archi-
tectures. For hyperparameter setting, we maintained a consistent
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Fig. 2. (a) Structure of the LSTM network. (b) The structure of the MLP
network. (c) The structure of the CNN part of the CNN-LSTM network.

batch size of 64. The number of training epochs were varied
by model type to ensure proper convergence for all subjects:
15 epochs for LSTM models, 20 epochs for MLP models,
and 25 epochs for CNN-LSTM models. To enhance statistical
robustness, we conducted 20 independent testing rounds for each
sensor configuration on each subject. In each round, the training
and testing data of the subject were shuffled at the beginning for
the training of a new model. During the model training iterations
and followed testing, the original train-test split was preserved.
This approach guarantees that the model is exposed only to train-
ing data during fitting, while testing data remains unseen until
final evaluation. Each round of training generated a new model
and we obtained the mean accuracy from 20 rounds of testing
for each subject. Subsequently, we used these means to com-
pute the mean and standard deviation accuracy for all subjects.
This repeated random subsampling cross-validation approach
reduces the randomness associated with any single data split
and enables the calculation of both the mean and variance of
model performance, resulting in a more stable and statistically
meaningful evaluation. During our evaluation of these three deep
learning models, we did not perform systemic hyperparameter
tuning for each sensor configuration. This allows a more direct
comparison of how different sensor configurations impact HAR
results without introducing uncertainty of tuning.

During training, the cross-entropy loss for all three models
dropped sharply within the first few epochs, then decreased
gradually before leveling off. By the end of training, each model
converged to a low loss value, indicating effective learning and
confirming that the model architectures and optimizers were
appropriately configured.

D. Inertial Measurement Units

IV. RESULTS

We evaluated the performance of all possible combinations of
the three IMUs, including individual IMUs, any pair of IMUs,
and all three IMUs together. All six axes of IMU accelerometer
and gyroscope data were used for training. The mean classi-
fication accuracy and standard deviation, averaged for all 21
subjects, are present in Fig. 3. The results reveal that using
two or more IMUs on one side of the body achieves HAR
accuracy consistently above 95%. While reducing the number

Fig. 3. (a) HAR accuracy with all three IMUs and any pair of IMUs. (b) HAR
accuracy with individual IMUs.

Fig. 4. (a) HAR accuracy with all three goniometers and any pair of goniome-
ters. (b) HAR accuracy with individual goniometers.

of IMUs in HAR models leads to a decline in accuracy, it is
noteworthy that any individual IMU still maintains a relatively
good average accuracy, exceeding 86% Statistical analysis us-
ing repeated-measures ANOVA (rm-ANOVA) confirmed that
increasing the number of IMUs, significantly enhances HAR
accuracy (all p < 0.05). Posthoc paired t-test with Bonferroni
correction (α = 0.0167, all p < 0.001) also suggests that the
number of features in the dataset plays a crucial role. However,
a post-hoc paired t-test revealed that the placements of the IMU
does not significantly impact on HAR accuracy (p > 0.083).
As shown in Fig. 3(a), LSTM and CNN-LSTM models exhibit
smaller standard deviations compared to MLP (e.g., 0.33 for
LSTM, 0.28 for CNN-LSTM, vs. 1.25 for MLP, with all IMUs),
indicating superior stability across sensor configurations.

A. Goniometer

Similar combination tests were conducted on the HAR per-
formance using goniometers. The mean classification accuracy
and standard deviation, averaged for all 21 subjects, are present
in Fig. 4. Overall, the results indicate that increasing the number
of goniometers used improves the accuracy of the HAR model.
Using only the time series of the angles provided by the go-
niometers, the HAR accuracy with two goniometers on one side
of the body can reach between 80% to 85%, and up to 95%
when three goniometers were applied. In contrast, using only
a single goniometer resulted in a significant lower accuracy,
ranging from 50% to 65%. rm-ANOVA analysis confirmed that
increasing the number of goniometers significantly improves
the HAR accuracy (all p < 0.05), with the post-hoc paired
t-test, with Bonferroni correction (α = 0.0203, all p < 0.001),
suggesting the number of input data channels is a key factor.
However, for tests involving one or two goniometers, a post-hoc
paired t-test revealed that the specific choice of goniometers does
not significantly impact HAR accuracy (p > 0.084). In addition,
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Fig. 5. (a) Bilateral IK HAR accuracy with all three joints and any pair of
joints. (b) Bilateral IK HAR accuracy with individual joints.

the inclusion of angular velocity, calculated from goniometer
joint angles with the central difference method, led to a signif-
icant increase of HAR accuracy across all three DNN models
(paired t-test, all p < 0.05). In the scenario where all three joints
are utilized, incorporating joint angular velocities enhances the
performance of the three models by approximately 1% –3% No-
tably, the LSTM model showed the greatest improvement, nearly
10%, when angular velocities were added to the “ankle+knee”
combination, followed by the CNN-LSTM model, with the MLP
model showing the least improvement.

B. Inverse Kinematics

In the study by Yu et al. [4], HAR using bilateral thigh
IMU motion data was applied to a hip exoskeleton, achieving
excellent results on four activities (standing, level walking, and
ascending/descending stairs). Given that the dataset we use did
not include IMUs mounted on both lower limbs, we utilized
bilateral hip joint IK data and generated hip angular velocities
with three DNN models to test the same four activities. The
IK data of the GT dataset provides bilateral lower limb joint
angles (six in total) calculated from the motion capture data.
Similar to the goniometers, we also used the central difference
method to calculate the angular velocities of all the IK joint
angles during the activities. The mean classification accuracy
and standard deviation averaged for all 21 subjects are shown
in Fig. 5. The results demonstrate that using bilateral joint data
significantly outperform IMUs and goniometers, regardless of
the joint combination. When using three joints from both lower
limbs, the average accuracy of all three models exceeded 98%,
with the highest accuracy of 98.98% using the LSTM model.
Due to its high accuracy, adding angular velocity to the joint an-
gle dataset did not further improve the model’s performance. For
combinations of any two joints, the accuracy of the “hip+ankle”
combination is slightly lower than the other two (“hip+knee”
and “knee+ankle”). Nonetheless, even the least accurate model
in this case, CNN-LSTM, achieved an accuracy above 93% using
only “hip+ankle” joint angles. The highest average accuracy was
achieved with the “hip+knee” combination, where the accuracy
of MLP reached 97.77% with joint angle alone. Incorporating
angular velocity in the two joint cases improved the average
accuracy across all three models by approximately 2% with
the LSTM model seeing the most improvement and reaching
98.56% accuracy with the “hip+knee” configuration. Incorpo-
rating angular velocity to individual joints resulted in substantial
enhancement in HAR performance. When utilizing only a single
joint, the hip exhibits the best accuracy of 91.79% using the MLP,
followed by the knee and ankle joint with accuracy between 80%
and 87% The inclusion of angular velocity elevates the HAR

Fig. 6. (a) HAR performance comparison between goniometers and IK (joint
angle only) with all three joints and any pair of joints. (b) HAR performance
comparison between goniometers and IK (joint angle only) with individual
joints.

Fig. 7. (a) HAR performance comparison between goniometers and IK (with
angular velocity) with all three joints and combinations of any two joints.
(b) HAR performance comparison between goniometers and IK (with angular
velocity) with a single joint.

performance of all individual joints above 90% Notably, adding
angular velocity to the knee joint resulted in a performance
elevation of nearly 15% for LSTM model. When combined with
derived angular velocities, the hip achieves the best accuracy of
single joint accuracy at 94.02% using the LSTM.

C. IK vs Goniometers

Given that both IK and goniometers measure the angular
movement of joints, we conducted a comparative analysis of the
HAR performance using these two sensing modalities. Since the
goniometer data was exclusively from the right lower limb, we
selected corresponding data from the right lower limb in the IK
dataset for a fair comparison. Fig. 6 presents the results of the
comparison utilizing only joint angles, while Fig. 7 incorporates
the joint angular velocity into the comparison. The comparative
results demonstrate that, when relying solely on joint angles,
IK data generally outperformed those using goniometers, with
IK performance for “hip+knee” and “hip+ankle” combinations
leading goniometers by 5% when using the MLP model. Upon
the integration of angular velocity, the HAR performance of IK
consistently outperforms the goniometer. In scenarios involving
all joints, IK’s average HAR accuracy surpassed that of the go-
niometer by 2% When comparing any two joints, IK’s advantage
increased to 5% and for single-joint tests, the advantage nearly
reached 10%

D. IK + Thigh IMU

To mimic a potential sensor configuration for a human hip ex-
oskeleton, we evaluated the combination of bilateral hip sagittal
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Fig. 8. (a) HAR performance comparison between bilateral IK (joint angle
only) and IK+Thigh IMU with all three joints and combinations of any two
joints. (b) HAR performance comparison between IK (joint angle only) and
IK+Thigh IMU with a single joint.

Fig. 9. (a) HAR performance comparison between IK (with derived angular
velocity) and IK+Thigh IMU with all three joints and combinations of any two
joints. (b) HAR performance comparison between IK (with derived angular
velocity) and IK+Thigh IMU with a single joint.

angle (IK) data with an additional thigh-mounted IMU. Incor-
porating this additional thigh IMU enhanced the performance
of the three models by 6.89% 7.26% and 4.24% respectively,
when compared to models with only bilateral hip joint angles.
We further conducted analysis by adding the IMU to all joint
IK combinations. In Fig. 8, the HAR performance is illustrated
both prior to and subsequent to the incorporation of the thigh
IMU, utilizing various joint combinations from the bilateral IK
dataset. For any joint combination within the IK dataset, inclu-
sion of the thigh IMU enhances the HAR performance across
all DNN models. When all joints are included, incorporating the
thigh IMU enables the models to maintain robust performance,
achieving an average accuracy of approximately 99% across all
three models, with the highest accuracy reaching 99.23% For
any dual-joint combination, the introduction of the thigh IMU
enhances the average accuracy across the three configurations,
with the mean accuracy of all models approximating 98% No-
tably, the “hip+ankle” combination provides the highest rise,
roughly 3% achieving an accuracy of 97.96% (MLP). The high-
est accuracy is brought by the “hip+knee” combination, which
reaches an accuracy of 98.41% (MLP). The distinctions among
the various combinations remain small. In contrast, integrating
the thigh IMU elevated the HAR accuracy of individual joints by
approximately 7% –15% converging the HAR performance of
all individual joints to around 95% with the best result 96.03%
achieved by hip (MLP), followed by 95.74% with knee (MLP).
In addition, incorporating the thigh IMU decreased the standard
deviation of the mean HAR accuracy, rendering the model’s
performance more consistent.

In Fig. 9, we compare the performance of bilateral IK and
Thigh IMU with bilateral IK and derived joint angular velocity.

Overall, the inclusion of the thigh IMU continues to bolster
performance in individual joint evaluations, although the margin
of enhancement lowers to a range of 1% –5% When employing
any combination of two joints or all joints, the contribution of the
thigh IMU offers negligible impact on performance. However,
compared to using joint angles and angular velocities alone,
integrating the thigh IMU reduces the standard deviation of mean
accuracy, rendering more consistent model performance.

Using the best performing “bilateral IK + thigh IMU” data
combination, we deployed the corresponding deep learning
models onto a standalone Nvidia Jetson Xavier (an edge
device suited for exoskeleton control) to evaluate their activity
prediction speed. To emulate real-world HAR, the test data
was fed to the models in single batches, performing real-time
recognition for each sliding window. Among the models, the
MLP model achieved the fastest average inference time, ranging
from 0.43 to 0.71 ms for different joint configurations. The
CNN-LSTM model demonstrated a slightly lower inference time
(2.84–2.93 ms) than the LSTM model (3.18–3.28 ms), which
could potentially be attributed to the GPU’s parallel processing
efficiency with the CNN-LSTM’s architecture. Notably, both
the LSTM and CNN-LSTM models maintained inference times
under 3.3 ms, suggesting a potential HAR rate exceeding 300 Hz.

E. Confusion Matrices

To further ascertain the capability of sensors to distinguish
between these six activities and understand the nature of mis-
classifications, we generated confusion matrices during testing
based on better-performing sensors and sensor combinations of
IK and IK+thigh IMU. We first selected the best-performing
(i.e., highest average accuracy across subjects) model type of
the three DNNs for each sensor configuration based on previous
bar chart results. Subsequently, for that particular model type,
we chose the model with the highest accuracy (among 20 rounds
of individual training and testing) for each subject and averaged
the corresponding confusion matrices across all the subjects to
obtain the averaged confusion matrix results.

Fig. S1 in the supplement material shows the best classifica-
tion results from the top performing models using bilateral IK
joint angle data, bilateral IK joint angle and angular velocity
data, and bilateral IK joint angle data combined with the thigh
IMU data, respectively. The confusion matrix for IK indicates
that its primary misclassification errors occur between RA and
stair walking, as well as level ground walking and ramp walking.
As the number of joints decreases, the misclassification rate of
SA being mistaken for RA increases from 0.21% (2 joints) to
6.57% (1 joint), and ramp descending misclassified as level
ground walking increases from 1.51% to 10.05% With the
addition of generated IK joint angular velocities, the error rates
for these two misclassifications decrease to 4.09% and 7.79%
respectively, when using only a single joint. In optimal condi-
tions, the performance of bilateral IK with angular velocities
is very close to that of bilateral IK+thigh IMU. When using
three joints, no misclassification rate exceeds 0.05% ; with one
joint, the misclassification rate of level ground walking being
mistaken for ramp descent is 3.1% and SA being mistaken
for ramp ascent is 3.15% The combination of bilateral IK and
thigh IMUs performed the best, with all misclassification rates
below 1% when using three and two joints, except between
ramp descending and level ground walking, which is 1.02%
This is primarily due to the absence of misclassification between
ramp and stair walking in the same direction. Although this
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TABLE I
COMPARISON WITH OTHER DEEP LEARNING TECHNIQUES FOR

ACTIVITIES CLASSIFICATION

error reoccurred when using a single joint, its severity was
significantly reduced compared to using bilateral IK alone, with
maximum misclassification rate around 3% Among all the joint
combinations shown in Fig. S1, the combination of the hip and
knee joints exhibited the best performance when using any pair
of joints; the hip joint was the best performer when using a single
joint. In terms of DNN selection, MLP generally outperformed
LSTM and CNN-LSTM in most scenarios. However, LSTM
showed slightly better performance than MLP when all three
joints were used. Across all types of data, the average accuracy
gradually decreased as the number of joints used was reduced,
with a more significant drop in accuracy when reducing from
two joints to one joint.

We compared our sensor configurations and accuracy results
with other similar works, and the results are shown in Table I.
When utilizing bilateral hip joint angles (IK) and the derived an-
gular velocities, our results are slightly inferior to [48] and [49],
both of which use two IMU sensors. When we use the bilateral
angles of the two hip joints and a thigh IMU, our results are
better than all other referenced works.

F. Sliding Window Size

To evaluate the impact of different sliding window sizes
(durations) on HAR model performance, we conducted tests
using near optimal sensor combinations, which includes bilateral
IK and the thigh IMU. For consistency across all window dura-
tions, we maintained the fixed 50% sliding window overlapping.
During these tests, we increased the sliding window sizes to 200
and 300 ms, while reducing the sampling frequency to 50 Hz.
Longer windows capture extended temporal context, potentially
improving accuracy for activities, but at the expense of higher
latency. This adjustment ensures direct comparable window
dimensions without the need to modify the model architecture
or introduce computational bias from variable input dimensions.
Although down sampling may theoretically omit high-frequency
signals, a sampling rate at 20–50 Hz is sufficient to capture the
kinematic patterns of human daily activities [54], [55]. Fig. 10 il-
lustrates the HAR accuracy of bilateral IK and thigh IMU across
various numbers of joints, under sliding window durations of
200–300 ms. When the sliding window length was increased
from 50 to 200 ms, the performance of models using three joints
remained nearly unchanged, those using two joint combinations
showed a performance increase of no more than 0.5% and those
using a single joint saw an increase in performance ranging from
0.7% to 2% The 300 ms sliding window setting yielded slightly
better performance improvements than the 200 ms setting. Com-
pared to the 50 ms setting, the performance of models using three
joints improved by 0.1% those using two joint combinations
showed a performance increase of no more than 1% and those
using a single joint experienced a performance increase ranging
from 1.5% to 3%.

Fig. 10. (a) Bilateral IK+thigh IMU HAR performance comparison under 200
and 300 ms with all three joints and any pair of joints. (b) Bilateral IK+thigh IMU
HAR performance comparison under 200 and 300 ms with individual joints.

V. DISCUSSION

This study examines the HAR performance of three distinct
sensor types when used individually or in combinations at dif-
ferent placements, aiming to identify the optimal combination of
sensors for HAR applications in assistive devices such as lower
limb human exoskeletons. We chose an open source dataset
that offers a multitude of sensor feature channels, varieties of
human activity, and diverse environment conditions to ensure
that our models possess a degree of generalizability for future
developments on HAR for activities of daily living.

In this study, we adopted a repeated, stratified group shuffle–
split scheme per subject rather than a conventional k-fold cross-
validation protocol. This procedure can be viewed as a Monte
Carlo cross-validation strategy. By repeating the stratified group
shuffle–split 20 times and averaging across repetitions, we re-
duce the sensitivity to any single data split and can estimate
both the mean and the variance of model performance. We
note that this approach is not inherently more sample-efficient
than k-fold cross-validation, and its reliability depends on the
number of repetitions and the representativeness of each random
split. In our setting, approximately balanced activity classes and
large per-subject sample sizes make stratified random partitions
statistically close to the underlying subject-level distribution,
so repeated Monte Carlo cross-validation provides a practical
trade-off between computational cost and evaluation stability.

We concentrated on HAR using a very short sliding time win-
dow of 50 ms, targeting fast or real-time applications in exoskele-
ton assistance. While the impact of sliding window size on HAR
for locomotion-based activities has been studied, with medium
range window sizes (typically 100–500 ms) often resulting in
better accuracy [10], [22], the optimal sliding window size can
vary depending on the model and applications. For example,
Kang et al. [22] found that the optimal sliding window size is
350 ms for SVM and 750 ms for LDA. In contrast, we opted
for a shorter sliding window (50 ms), diverging from the longer
windows used in other studies (100 ms [11], 150 ms [4], 50–
500 ms [10]). While this choice may result in a slight decrease
in accuracy, it significantly shortens response time, promising
for real-time exoskeleton operation, and, with the same deep
learning models, still achieves comparable performance (within
1% ) to longer sliding windows of 200 and 300 ms, mak-
ing it highly advantageous for real-time control. The observed
differences highlight a fundamental trade-off: larger windows
improve recognition to a certain degree but add 200–300 ms
latency, while 50 ms windows deliver comparable accuracy with
near-instantaneous response. Shorter windows tend to slightly
increase misclassifications near transitional states due to limited
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temporal context, yet dense sensor configurations may mitigate
this effect through complementary spatial cues.

In practice, the model can perform immediate HAR upon
receiving the first data window and continuously updates its
predictions whenever a new 50 ms window is provided. From
a deployment standpoint, ultra-short windows reduce computa-
tional load and energy consumption, enabling efficient on-device
inference. With 50 ms windows and 50% overlap, HAR up-
dates occur every 25 ms, providing rapid, continuous activity
estimation suitable for real-time exoskeleton control. It enables
the control system to switch modes rapidly in response to user
activity changes with minimal delay. This balance of accu-
racy, responsiveness, and efficiency underscores the practical
advantages of short-window, sensor-optimized configurations
for embedded assistive systems.

When comparing the HAR accuracy between IMU and go-
niometer, we observed that IMU performs better, which is con-
sistent with the findings of Camargo et al. [10]. Our analysis
indicates that IMUs, when using only two sensors on one side
of the human lower extremities, can achieve over 95% HAR
accuracy with a short sliding window of 50 ms. This performance
surpasses that of goniometers, particularly in differentiating
various types of walking.

In terms of lower limb joint angles brought by IK data, the
HAR accuracy provided by the three joints of a single (unilateral)
side is slightly lower than that of three IMUs on the same
side, by approximately 2.5% However, when using bilateral
joint angles provided by IK, the HAR accuracy is higher than
that of unilateral IMUs. It is evident from comparing Fig. 5
and 6 that when the number of joints used is reduced, the
HAR accuracy using bilateral joints significantly exceeds that
of unilateral joints. In addition, when using the same number
of joints, the performance of using a single joint bilaterally is
roughly equivalent to using two joints unilaterally. Moreover,
tests with goniometers and IK show that derived joint angular
velocities greatly improve HAR performance, especially with
fewer joints.

The primary distinctions between our results and the work
of [4] lie not only in the complexity and diversity of the activity
environments captured in our utilized dataset, which include
steps of various heights and ramps with different inclines, but
also in our methodological advancements. Our study involves a
larger number of subjects, thereby introducing greater variability
and enhancing the robustness of our findings. Importantly, our
approach achieved similar performance (within a 1% margin)
in activity recognition using shorter sliding windows (50 vs.
200 and 300 ms), without the need for tuning the NN hyperpa-
rameters. In addition, by exclusively utilizing time-series data
in LSTM, CNN-LSTM, and MLP models, our methodology
simplifies the data input process, significantly reducing the com-
putational overhead typically associated with feature extraction
as used in [4]. This end-to-end learning approach highlights our
study’s contribution to improving the accuracy and feasibility of
HAR systems in dynamic and complex environments.

Compared to [10] and [22], which used the same dataset,
our study emphasizes the performance evaluation of single-type
sensors (with the exception of adding a single IMU in some
cases) in HAR and the impact of different joints and joint
combinations under single-sensor conditions on HAR outcomes.
Our results indicate that configurations relying solely on a single
joint and one sensor type generally exhibit lower accuracy
compared to multijoint or multimodal setups. For instance,
single-joint goniometer data achieved only 50–65% accuracy

[see Fig. 4(b)], whereas configurations combining joint angles
with angular velocities or IMUs (e.g., hip IK + thigh IMU)
reached 91–96% accuracy [see Fig. 5(b) and Fig. 8(b)]. This
suggests that while single-sensor systems are inherently limited
in capturing kinematic information, integrating derived angular
velocity or an additional type of sensors can enhance their
performance. Notably, certain single-joint configurations (e.g.,
hip joint angles with angular velocities or a thigh IMU) achieved
accuracy levels comparable to multijoint setups, highlighting the
potential for minimalist designs in specific cases. Furthermore,
our findings show that the performance differences between
any two joint combinations under the same sensor setup are
minimal (up to approximately 2.5% between “hip+knee” and
“ankle+knee” using goniometers with only joint angle data),
suggesting greater flexibility in data collection for lower limb ex-
oskeleton development. Similar to [22], we achieved comparable
and superior HAR performance with setups involving a thigh
IMU combined with hip joint angles and other sensors/joints.
These results underscore the importance of multisensor and mul-
tijoint approaches in enhancing HAR accuracy and reliability.

The inclusion of the thigh IMUs led to improved classification
accuracy for certain activities, as reflected in the confusion
matrices, particularly when only a single joint type was used
bilaterally (e.g., both hips or both knees etc.) Small differences in
ramp inclines result in subtle kinematic variations in joint angles
during incline adaptation. While sagittal joint angles alone may
not be sufficiently sensitive to capture these small slope changes,
combining these angles with thigh IMU data (comprising both
acceleration and angular velocity) can enhance differentiation,
as velocity and acceleration provide derivative information that
amplifies sensitivity to minor changes in walking inclination. In
practical applications, additional data sources, such as ground
reaction forces measured via pressure insoles, could further
improve such classification and serve as complementary inputs
for HAR [10]. Moreover, improvements in model architecture
could enhance HAR performance. For example, integrating
an attention mechanism within the LSTM layer could enable
more selective extraction of motion patterns, thereby reducing
misclassification and improving overall robustness [56].

Although the configuration using all three bilateral joint
angles and a thigh IMU achieved the highest performance,
acquiring full joint kinematics may not be practical for many
lower-limb exoskeletons. For example, adding ankle sensors to a
hip or hip–knee exoskeleton introduces unnecessary complexity.
In contrast, using bilateral hip and knee angles with a thigh
IMU provides nearly equivalent HAR accuracy (<1% difference
on average) while being more feasible for implementation. In
the work by Molinaro et al. [7], both real-time joint angle
measurements through encoders and acceleration data from
IMUs were used for exoskeleton adaptive control. We believe
a similar setup with encoders and IMUs can be used for HAR
with our trained models for real-world deployment. In practice,
if high-quality IMUs that can accurately measure joint angle and
angular velocity are employed, they can potentially replace the
joint encoders for HAR in real-world setup.

Despite the encouraging results obtained in this study, there
are several limitations that should be noted. First, according to
the description of the dataset [9], all subjects were young, healthy
adults. During the experiments, the dataset authors collected
IMU and goniometer data only from the right lower limb rather
than from both sides. Moreover, the dataset did not include trials
involving exoskeleton use. Second, this study focused exclu-
sively on six steady-state locomotion modes and did not include
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transitional activities (e.g., stand-to-walk, walk-to-stair ascent,
or walk-to-ramp ascent). Third, although we achieved a 50 ms
sliding window for near real-time classification in offline testing,
the latency and computational loads in an actual exoskeleton
controller were not validated on an integrated hardware system
that includes both sensors and the HAR module. Deploying
our models on such a system and measuring true closed-loop
performance will be an important next step. Finally, the dataset
employed in this study does not include trials involving subjects
wearing active lower-limb exoskeletons, which may affect HAR
performance when applied in such contexts. However, prior
research has shown that healthy users often adopt gait patterns
that more closely resemble their natural unassisted walking after
extensive training [57] or when adaptive control strategies are
employed [58]. These findings suggest that the influence of ex-
oskeleton assistance on gait patterns, and consequently on HAR
performance, may be mitigated under appropriate adaptation or
control conditions. However, for practical HAR model deploy-
ment with exoskeleton usage, incorporating a small amount of
exoskeleton-specific data for fine-tuning existing models repre-
sents a promising approach to further improve the model.

Future work could include evaluating the robustness of the
trained models under practical conditions, with particular em-
phasis on clinical populations whose signal characteristics may
deviate from the training data. Systematic hyperparameter tun-
ing is also a valuable avenue for exploration, as it can materially
affect final performance [59] and may reveal subtle distinctions
in how different deep learning models respond to different
sensor configurations and data variability. Furthermore, incor-
porating transitional activities into training may enhance model
generalization and support smoother mode transitions within
adaptive control frameworks. It would also be valuable to verify
whether the ultra-short sliding window maintains the practical
and energy-efficient advantages observed in this study across
broader contexts. Finally, future investigations should explore
closed-loop, on-device deployment on lower-limb exoskeletons,
integrating real-time personalized data and online fine-tuning to
reduce domain shift and achieve reliable, low-latency perfor-
mance. Collectively, these directions may help translate high
offline accuracy into robust, clinically meaningful performance
in real-world assistive devices.

While emerging task-invariant exoskeleton controllers
show promise in recent studies [5], [60], [61], they are
often limited to a specific group of activities or do not
demonstrate a definitive advantage in reducing metabolic
costs activity-specific controllers [7]. Therefore, HAR remains
highly beneficial, as it supports personalized, activity-specific
controller adjustment through continuous learning, enabling
seamless switching between control strategies across various
activities. Furthermore, HAR facilitates the monitoring of
activity-specific metrics like walking duration, step count, or
number of stairs climbed etc., thus enhancing health monitoring
and personalized user feedback.

VI. CONCLUSION

This study provides a comprehensive evaluation of sensor
and data selection strategies for real-time HAR using DNN
models. By analyzing a diverse dataset consisting of IMUs,
goniometers, and IK derived joint angles, we highlight the
critical role of sensor type, quantity, and placement on HAR
accuracy. Our results demonstrate that accuracy improves with
the number of joints used, and that the addition of an IMU
provides the greatest benefit when only a single joint is available.

Furthermore, these results consistently surpassed comparable
configurations relying solely on unilateral IMUs or goniometers.
Importantly, incorporating derived angular velocity information
significantly enhanced accuracy, particularly evident when using
single-joint bilateral IK data, underscoring the value of using
derived data instead of extra sensors in HAR. Our results also
reveal no significant performance differences among the three
DNN models, indicating flexibility in model selection. All DNN
models operate short window (50 ms) time-series data without
the need for feature extraction, thus simplifying the data input
process while reducing computational overhead and facilitating
high frequency HAR suitable for edge computing devices such
as the Jetson Xavier. Overall, our research highlights critical
design considerations for implementing efficient and real-time
HAR systems balancing recognition accuracy, response latency,
system complexity, and power efficiency in assistive and mobile
health applications.

DATA AND CODE AVAILABILITY

The code for data preprocessing, the deep learning mod-
els (MLP, LSTM, and CNN-LSTM), and inference of trained
models on an edge device (Jetson Xavier) is available at
https://github.com/NJITBioDynamics/HAR_DL.
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